Extensions 1→N→G→Q→1 with N=C2 and Q=C13×C22⋊C4

Direct product G=N×Q with N=C2 and Q=C13×C22⋊C4
dρLabelID
C22⋊C4×C26208C2^2:C4xC26416,176


Non-split extensions G=N.Q with N=C2 and Q=C13×C22⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C13×C22⋊C4) = C13×C2.C42central extension (φ=1)416C2.1(C13xC2^2:C4)416,45
C2.2(C13×C22⋊C4) = C13×C22⋊C8central extension (φ=1)208C2.2(C13xC2^2:C4)416,48
C2.3(C13×C22⋊C4) = C13×C23⋊C4central stem extension (φ=1)1044C2.3(C13xC2^2:C4)416,49
C2.4(C13×C22⋊C4) = C13×C4.D4central stem extension (φ=1)1044C2.4(C13xC2^2:C4)416,50
C2.5(C13×C22⋊C4) = C13×C4.10D4central stem extension (φ=1)2084C2.5(C13xC2^2:C4)416,51
C2.6(C13×C22⋊C4) = C13×D4⋊C4central stem extension (φ=1)208C2.6(C13xC2^2:C4)416,52
C2.7(C13×C22⋊C4) = C13×Q8⋊C4central stem extension (φ=1)416C2.7(C13xC2^2:C4)416,53
C2.8(C13×C22⋊C4) = C13×C4≀C2central stem extension (φ=1)1042C2.8(C13xC2^2:C4)416,54

׿
×
𝔽